Genetic Predisposition to Colon and Rectal Adenocarcinoma Is Mediated by a Super-enhancer Polymorphism Coactivating CD9 and PLEKHG6.

State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. College of Informatics, Huazhong Agricultural University, Wuhan, China. State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. miaoxp@hust.edu.cn.

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2020;(4):850-859

Abstract

BACKGROUND Genome-wide association studies (GWAS) have identified dozens of loci associated with colon and rectal adenocarcinoma risk. As tissue-specific super-enhancers (SE) play important roles in tumorigenesis, we systematically investigate SEs and inner variants in established GWAS loci to decipher the underlying biological mechanisms. METHODS Through a comprehensive bioinformatics analysis on multi-omics data, we screen potential single-nucleotide polymorphisms (SNP) in cancer-specific SEs, and then subject them to a two-stage case-control study containing 4,929 cases and 7,083 controls from the Chinese population. A series of functional assays, including reporter gene assays, electrophoretic mobility shift assays (EMSA), CRISPR-Cas9 genome editing, chromosome conformation capture (3C) assays, and cell proliferation experiments, are performed to characterize the variant's molecular consequence and target genes. RESULTS The SNP rs11064124 in 12p13.31 is found significantly associated with the risk of colon and rectal adenocarcinoma with an odds ratio (OR) of 0.87 [95% confidence interval (CI), 0.82-0.92, P = 8.67E-06]. The protective rs11064124-G weakens the binding affinity with vitamin D receptor (VDR) and increases the enhancer's activity and interactions with two target genes' promoters, thus coactivating the transcription of CD9 and PLEKHG6, which are both putative tumor suppressor genes for colon and rectal adenocarcinoma. CONCLUSIONS Our integrative study highlights an SE polymorphism rs11064124 and two susceptibility genes CD9 and PLEKHG6 in 12p13.31 for colon and rectal adenocarcinoma. IMPACT These findings suggest a novel insight for genetic pathogenesis of colon and rectal adenocarcinoma, involving transcriptional coactivation of diverse susceptibility genes via the SE element as a gene regulation hub.

Methodological quality

Publication Type : Observational Study

Metadata